Journal of Animal Behaviour and Biometeorology
https://jabbnet.com/article/5f934e5e0e88257223485d91
Journal of Animal Behaviour and Biometeorology
Review Article Open Access

Thermogenesis in stingless bees: an approach with emphasis on brood's thermal contribution

Maiko Roberto Tavares Dantas

Downloads: 0
Views: 885

Abstract

The animals behave as a thermodynamic system complex, which remains all the time exchanging energy with the environment. In this context, the body temperature of bees considerably accompanies variations in ambient temperature, and the performance of most of its activity is largely affected by air temperature. When these individuals are exposed to temperatures above or below the optimum range for the species during its pupal stage, these, when they survive, have morphological deficiencies, physiological or behavioral as adults. These insects use physiological activities such as internal temperature control mechanisms of the nest. Social insects like honey bees demonstrate certain thermoregulatory ability to nest in which they live, known as the colonial endotherm. This strategy has an interesting feature, which the animals are endothermic when performing motor and ectothermic during inactivity. The meliponines (stingless bees) are highly social bees, working together to maintain the colony, keeping almost constant the temperature throughout the year. The mechanisms of thermoregulation these animals are called passive thermoregulation, it is due solely to the construction of involucre and nesting (honeycomb structures) and not the motor activities of individuals. Therefore, in most species of stingless bees, with rare exceptions, are the only mechanisms that they have to termorregularem. Maintaining a constant temperature is critical for normal growth and development of the larval and pupal stages. It is known that the brood combs also contribute to colonial thermoregulation through its thermogenesis, and larvae and pupae more mature have higher heat input to the brood comb along its development.

Keywords

colonial thermoregulation, social bees, thermoregulatory ability

References

Almeida GF (2008) Fatores que interferem no comportamento enxameatório de abelhas africanizadas. Tese, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto.

Angilletta MJ (2002) The evolution of thermal physiology in ectotherms. Journal of Thermal Biology 27:249-268.

Angilletta Jr AF, Bennett H, Guderley CA, Navas CA, Seebacher F, Wilson RS (2006) Coadaptation: a unifying principle in evolutionary thermal biology. Physiological and Biochemical Zoology 79:282-294.

Baêta FC, Souza CF (1997) Ambiência em edificações rurais: conforto animal. Viçosa: UFV.

Camargo JMF (1970) Ninhos e biologia de algumas espécies de Meliponídeos (Hymenoptera: Apidae) da região de Porto Velho, território de Rondônia, Brasil. Revista Biologia Tropical 16:207-239.

Camargo CA (1972) Determinação de castas em Scaptotrigona postica Latreille. Revista Brasileira de Biologia 321:133-138.

Camargo JMF, Wittmann D (1989) Nest architecture and distribution of the primitive stingless bee, Mourella caerulea (Hymenoptera, Apidae, Meliponinae): evidence for the origin of Pleibeia (s. lat.) on the Gondwana continent. Studies on Neotropical Fauna and Environment 24:213-229.

Carvalho MDF (2009) Temperatura da superfície corpórea e perda de calor por convecção em abelhas (Apis mellifera) em uma região semi-árida. Dissertação, Universidade Federal Rural do Semi-árido.

Charabidze D, Bourel B, Gosset D (2011) Larval-mass effect: Characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates.  Forensic Science International. doi: 10.1016/j.forsciint.2011.04.016.

Church NS (1959a) Heat loss and the body temperatures of flying insects. I. Heat loss by evaporation of water from the body. Journal of Experimental Biology 37:171–185.

Church NS (1959b) Heat loss and the body temperatures of flying insects. II. Heat conduction within the body and its loss by radiation and convection. Journal of Experimental Biology 37:186–212.

Crailsheim K, Stabentheiner A, Hrassnigg N, Leonhsrd B (1999) Oxygen consumption at different activity levels and ambient temperaturas in isolated honeybees (Hymenoptera: Apidae). Entomologia Generalis 24:001-012.

Couto R, Camillo E (2007) Influência da temperatura na mortalidade de imaturos de Centris (Heterocentris) analis (Hymenoptera, Apidae, Centridini). Iheringia. Série Zoologia 97:51-55.

Dantas MRT (2014) Termogênese e distribuição de calor pela cria de abelhas sem ferrão e sua relação com o estágio de desenvolvimento em ambiente semiárido. Dissertação, Universidade Federal Rural do Semi-árido.

Degrani-Hoffman G, Spivak M, Martin IH (1993) Role of thermoregulation by nestmates on the development time of honeybee (Hymenoptera: Apidae) queens. Annals of the Entomological Society of America 86:165-172.

Dunham WE (1929) The influence of external temperature on the hive temperatures during the Summer. Journal of Economic Entomology 22:798-801.

Engels W, Rosenkranz P, Engels E (1995) Thermoregulation in the nest of the neotropical stingless bee Scaptotrigona postica and a hypothesis on the evolution of the temperature homeostasis in highly eusocial bees. Studies on Neotropical Fauna and Environment 30: 193–205.

Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifera. Z. Vergl. Physiol 43:305 –335.

Ferreira NS (2014) Temperatura colonial e tolerância térmica de Melipona subnitida, uma espécie de abelha sem ferrão (Hymenoptera, Apidae, Meliponini) da caatinga. Dissertação, Universidade Federal Rural do Semi-árido.

Fletcher DJC, Crewe RM (1981) Nest structure and thermoregulation in the stingless bee, Trigona (Plebeina) denoiti Vachal (Hymenoptera: Apidae). Journal of the Entomological Society of South Africa 44:183- 196.

Free J, Simpson J (1963) The respiratory metabolism of honeybee colonies at low temperatures. Entomologia Experimentalis et Applicata 8:234-238.

Grodziki P, Caputa M (2005) Social versus individual behavior: a comparative approach to thermal behavior of honeybee (Apis mellifera L.) and the American cockroach (Periplaneta Americana L.). Journal of Insect Physiology 51:315-322.

Halcroft MT, Spooner-Hart RN, Dollin LA (2013a) Australian stingless bees. In: Vit P, Pedro SRM, Roubik DW (ed) Pot Honey: A Legacy of Stingless Bees. Springer Verlag, Berlin, pp 35–72.

Halcroft MT, Haigh AM, Holmes SP, Spooner-Hart RN (2013b) The thermal environment of nests of the Australian stingless bee, Austroplebeia australis. Insectes Sociaux 60:497-506.

Henrich B (1974) Thermoregulation in endothermic insects. Science 185:747-756.

Heinrich B (1979a) Keeping a cool head: Honeybee thermoregulation. Science 205:1269-1271.

Heinrich B (1979b) Thermoregulation of African and European Honeybees during foraging, attack and hive exits and returns. Journal of Experimental Biology 80:217-229.

Heinrich B (1980a) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. Journal of Experimental Biology 85:61-72.

Heinrich B (1980b) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. Journal of Experimental Biology 85:73-87

Heinrich B (1981) Insect thermoregulation. New York: John Wiley & Sons.

Heinrich B (1993) Hot-blooded insects: Strategies and mechanisms of thermoregulation. Harvard University Press, Cambridge.

Heinrich B, Esch H (1994) Thermorregulation in bees. American Scientist 82:164-170.

Heinrich B (1996) The thermal warriors: strategies of insect survival. Harvard University Press, Cambridge.

Hess WR (1926) Die Temperaturregulierung im Bienenvolk, Z. Vgl. Physiol. 4:465–487.

Himmer A (1927) Der soziale Warmehaushalt der Honigbiene, II, Die Warme der Bienenbrut. Erianger JB. Bienenk 5:1-32.

Huey RB, Kingsolver JG (1989) Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4:131-135.

Jones JC, Helliwell P, Beekman M, Maleszka R, Oldroyd BP (2005) The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology A 191:1121-1129.

Jones JC, Oldroyd BP (2007) Nest therorregulation in social insects. Advances in insect Physiology 33:153-191.

Josephson RK (1981) Temperature and the mechanical performance of insect muscle. In: Heinrich J (ed) Insect Thermorregulation. Wiley, New York.

Kerr WE, Sakagami SF, Zucchi R, de Portugal Araujo V, Camargo JMF (1967) Observações sobre a arquitetura dos ninhos e comportamento de algumas espécies de abelhas sem ferrão das vizinhanças de Manaus, Amazonas (Hymenoptera, Apoidea). Atas Simpósio Biota Amazônica 5:255-309.

Kerr WE, Goncalves LS, Blota LF, Maciel HB (1984) Comparative biology of Italian bees (Apis mellifera ligustica), Africanized bees (Apis mellifera adansonii), and their hybrids. Mimeograf paper produced at the Cornell University Entomology Department.

Kerr WE, Carvalho GA, Nascimento VA (1996) Abelha Uruçu: Biologia, Manejo e Conservação – Belo Horizonte-MG: Acangaú: il., (Coleção Manejo da vida silvestre; 2).

Kronenberg F, Heller C (1982) Colonial thermoregulation in honey beee (Apis mellifera). Jornal of Comparative Physiology 148:65-76.

Kukal O, Heinrinch B, Duman JG (1988) Behavioural thermoregulation in the freeze-tolerant arctic caterpillar, Gynaephora groenlandica. Journal of experimental Biology 138:181- 193.

Lindauer M (1955) The water economy and temperature regulation of the honeybee colony. Bee World 364:62-72.

Loli D (2008) Termorregulação colonil e energética individual em abelhas sem ferrão Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae, Meliponini). Tese, Instituto de Biociências, Universidade de São Paulo.

Macías-Macías J, Quezada-Euán J, Contreras-Escareño F, Tapia-Gonzalez J, Moo-Valle H, Ayala R (2011) Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini). Apidologie 42:679-689.

Mardan M, Kevan PG (2002) Critical temperatures for survival of brood and adult workers of the giant honeybee Apis dorsata (Hymenoptera: Apidae). Apidologie, Avignon 33:295-301.

May ML (1979) Insect termoregulation. Annu. Review. Entomology 24:313-349.

Michener CD (1974) The social behaviour of bees. A comparative study. Cambridge, Harvard University.

Moo-Valle H, Quezada-Euán JJG, Navarro J, Rodriguez-Carvajal LA (2000) Patterns of intranidal temperature fluctuation for Melipona beecheii colonies in natural nesting cavities. Journal of Apicultural Research 39:3-7.

Moyes CD, Schulte PM (2010) Princípios da fisiologia animal (2a edição). Artmed, Porto Alegre-RS.

Nããs IA (1989) Princípios de conforto térmico na produção animal. Ícone Editora, São Paulo.

Nieh JC, Sánchez D (2005) Effect of food quality, distance and height on thoracic temperature in the stingless bee Melipona panamica. Journal of Experimental Biology 208:3933-3943.

Petz M, Stabentheiner A, Crailsheim K (2004) Respiration of individual honeybee larvae in relation to age and ambient temperature. Journal of Comparative Physiology B 174:511–518.

Posey DA, Camargo JMF (1985) Additional notes on the classification and knowledge of stingless bees (Meliponinae, Apidae, Hymenoptera) by the Kayapó Indians of Gorotire, Pará, Brazil. Annals of Carnegie Museum 54:247–274.

Roberts S.; Harrison JF (1998) Mechanisms of thermoregulation on flying bees. American Zoologist. 38:459-502.

Roldão YS (2011) Termorregulação colonial e a influência da temperatura no desenvolvimento da cria em abelhas sem ferrão, Melipona scutellaris (Hymenoptera, Apidade, Meliponini). Dissertação, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto.

Roubik DW, Peralta FJA (1983) Thermodinamics in nest of two Melipona species in Brazil. Acta Amazonica 13:452-66.

Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New York.

Roubik DW (2006) Stingless bee nesting biology. Apidologie 37:124–143.

Ruf C, Fiedler K (2000) Thermal gains through collective metabolic heat production in social caterpillars of Eriogaster lanestris. Naturwissenschaften 87: 193- 196.

Sakagami SF (1882) Stingless bees. In: Hermann HR (ed) Social Insects, vol 3. Academic Press, New York.

Schwarz HF (1948) Stingless bees (Meliponidae) of the Western Hemisphere. Bulletin of the American Museum of Natural History 90:1–546.

Schmolz E, Schulz O (1995) Calorimetric investigations on thermoregulation and growth of wax moth larvae Galleria mellonella. Thermochimica Acta 251:241–245.

Schmolz E, Lamprecht I (2000) Calorimetric investigations on activity states and development of holometabolous in sects. Thermochimica Acta 349:61–68.

Seeley TD (2006) Ecologia da Abelha: Um Estudo de Adaptação na Vida Social (tradução de C. A. Osowski). Paixão Editores LTDA, Porto Alegre.

Stabentheiner A, Pressl H, Papst T, Hrassnigg N, Crailsheim K (2003) Endothermic heat production in honeybee winter clusters. Journal of Experimental Biology 206:353–358.

Stabentheiner A, Kovac H, Brodschneider R (2010) Honeybee colony thermoregulation – regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. Plus One 5:297-308.

Silva RG (2000) Introdução à Bioclimatologia Animal. Nobel, São Paulo.

Southwich EE (1982) Metabolic energy of intact honey bee colonies. Comparative Biochemistry and Physiology 71:277-281.

Southwich EE (1983) The honey bee cluster as a homeothermic superorganism. Comparative Biochemistry and Physiology 75:641-645.

Sung IH, Yamane S, Hozumi S (2008) Thermal characteristics of nests of  the Taiwanese stingless bee Trigona ventralis hoozana (Hymenoptera: Apidae). Zoological Studies 47:417-428.

Tautz J, Maier S, Groh C, Rossler W, Brockmann A (2003) Behavioural performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proceedings of the National Academy of Sciences of the United States of USA 100:7343–7347.

Van Benthem FDJ, Imperatriz-Fonseca VL, Velthuis HHW (1995) Biology of the stingless bee Plebeia remota (Holmberg): observations and evolutionary implications. Insectes Sociaux 42:71-87.

Vollet Neto A (2011) Biologia térmica de Scaptotrigona depilis (Apidae, Meliponini): adaptações para lidar com altas temperaturas. Dissertação, FFCLRP-USP.

Wille A, Michener CD (1973) The nest architecture of stingless bees with special reference to those of Costa Rica (Hymenoptera: Apidae). Revista Biologia Tropical 21:1–278.

Zucchi R, Sakagami SF (1972) Capacidade termoreguladora em Trigona spinipes e em algumas outras espécies de abelhas sem ferrão (Hymenoptera: Apidae: Meliponinae). In: Cruz-Landim C, Hebling NJ, De Lello E, Takahashi CS (eds) Homenagem a Warwick Estevam Kerr. Rio Claro, São Paulo, pp 301-309.


Submitted date:
08/09/2016

Reviewed date:
09/08/2016

Accepted date:
09/12/2016

5f934e5e0e88257223485d91 jabbnet Articles
Links & Downloads

J. Anim. Behav. Biometeorol.

Share this page
Page Sections