Journal of Animal Behaviour and Biometeorology
https://jabbnet.com/article/doi/10.31893/jabb.20038
Journal of Animal Behaviour and Biometeorology
Review Article Open Access

Scientific findings related to changes in vascular microcirculation using infrared thermography in the river buffalo

Aldo Bertoni, Daniel Mota-Rojas, Adolfo Álvarez-Macias, Patricia Mora-Medina, Isabel Guerrero-Legarreta, Armando Morales-Canela, Jocelyn Gómez-Prado, Nancy José-Pérez, Julio Martínez-Burnes

Downloads: 0
Views: 23

Abstract

Abstract The objective of this review article is to discuss and analyze the most important scientific findings from studies of vascular microcirculation in the river buffalo using infrared thermography (IRT), as well as the thermal windows utilized with this species. The goals are to define the scope and areas of opportunity for IRT use in evaluating physiological processes and identifying potential applications in reproductive events associated with andrological traits in males and the detection of estrus and udder health in females. IRT has allowed the development of diverse perspectives regarding the comparative physiology of events like thermogenesis, peripheral blood flow, respiratory physiology, and mechanisms that reduce body temperature. The case of the river buffalo is no exception. According to the information analyzed, the temperatures of the orbital area, muzzle, and vulva have proven efficient for evaluating thermal comfort, a particularly important aspect of this species given its limited thermoregulating capacity and constant exposure to extreme temperatures. Evaluating scrotal temperature has been revealed as an appropriate tool for evaluating semen quality, while the surface temperature of the udder is useful in assessing mammary development in female buffaloes, two aspects of great zootechnical importance. In future studies, IRT will play a fundamental role in enhancing our understanding of the river buffalo’s mechanisms of vascular microcirculation, with applications in productivity and behavior.

Keywords

Bubalus bubalis, buffalo welfare, heat dissipation, thermal behaviors, thermal changes, thermal stress, thermoregulation

References

Aggarwal A, Upadhyay R (2013) Thermoregulation. In: Aggarwal A, Upadhyay R (eds) Heat Stress and Animal Productivity, 1st edn. Springer, India, pp. 1-25.

Alsaaod M, Büscher W (2012) Detection of hoof lesions using digital infrared thermography in dairy cows. Journal Dairy Science 95:735-742.

Andrade D (2015) Thermal windows and heat exchange. Temperature 2:451.

Angulo R, Noguera R, Berdugo JA (2005) El búfalo de agua (Bubalus bubalis) un eficiente utilizador de nutrientes: aspectos sobre fermentación y digestión ruminal. Livestock Research for Rural Development 17:67-71.

Barboza J (2011) Bondades ecológicas del búfalo de agua: camino hacia la certificación. Tecnología en Marcha 24:82-88.

Barros DV, Silva LKX, Kahwage PR, Lourenço- Junior JB, Sousa JS, Silva AGM, Franco IM, Martorano LG, Garcia AR (2016) Assessment of surface temperatures of buffalo bulls (Bubalus bubalis) raised under tropical conditions using infrared thermography. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 68:422-430.

Bertoni A, Napolitano F, Mota-Rojas D, Sabia E, Alvarez-Macias A, Mora-Medina P, Morales CA, Berdugo GJA, Guerrero-Legarreta I (2020) Similarities and differences between river buffaloes and cattle: health, physiological, behavioural and productivity aspects. Journal of Buffalo Science 9:92-109.

Brcko CC, Da Silva JAR, Martorano LG, Vilela RA, Nahúm B, Silva AG, Barbosa AV, Bezerra AS, Lourenco J (2020) Infrared thermography to assess thermoregulatory reactions of female Buffaloes in a humid tropical environment. Frontiers in Veterinary Science 7:180.

Capuco AV, Akers RM (1999) Mammary involution in dairy animals. Journal of Mammary Gland Biology and Neoplasia 4:137-144.

Casas-Alvarado A, Mota-Rojas D, Hernández-Ávalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Martínez-Burnes J (2020) Advances in infrared thermography: surgical aspects, vascular changes and pain monitoring in veterinary medicine. Journal of Thermal Biology 92: doi.org/10.1016/j.jtherbio.2020.102664.

Chacur MGM, Bastos GP, Vivian DS, Silva L, Chiari LNF, Araujo JS, Souza CD, Gabriel- Filho LRA (2016) Use of infrared thermography to evaluate the influence of the climatic factors in the reproduction and lactation of dairy cattle. Acta Scientiae Veterinaria 44:1412-1421.

Chacur MGM, Dantas A, Oba E, Ruediger FR, Oliveira RA, Bastos GP, Jorge AM (2018) Avaliação termográfica do desenvolvimento mamário de búfalas e suaregulação endócrina em distintos estágios fisiológicos. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 70:450-456.

Clapper JA, Ottobre JS, Ottobre AC, Zartman DL (1990) Estrual rise in body temperature in the bovine I. Temporal relationships with serum patterns of reproductive hormones. Animal Reproduction Science 23:89-98.

Cravello B, Ferri A (2008) Relationships between skin properties and environmental parameters. Skin Research and Technology 14:180-186.

Colak A, Polat B, Okumus Z, Kaya M, Yanmaz LE, Hayirli A (2008) Short communication: early detection of mastitis using infrared thermography in dairy cows. Journal Dairy Science 91:4244-4248.

Coulter GH, Cook RB, Kastelic JP (1997) Effects of dietary energy on scrotal surface temperature, seminal quality, and sperm production in young beef bulls. Journal Animal Science 75:1048-1052.

Davidson PA, Stabenfeldt HG (2014) A glândula mamária. In: Klein GB (ed) Cunningham tratado de fisiología veterinária, 5th edn. Elsevier, Rio de Janeiro, pp 439-449.

De Ruediger FR, Yamada PH, Bicas-Barbosa LG, Chacur MGM, Pinheiro-Ferreira JC, De Carvalho NAT, Milani-Soriano GA, Codognoto VM, Oba E (2018) Effect of estrous cycle phase on vulvar, orbital area and muzzle surface temperatures as determined using digital infrared thermography in buffalo. Animal Reproduction Science 197:154-161.

Deak FLGB, Chacur MGM, Souza CD, Andrade IB, Cornacini GF, Garcia AR, Gabriel-Filho LRA (2019) Effects of physiological stage and season on infrared thermograms of different body areas of dairy cows raised under tropical conditions. Animal Reproduction 16:311-316.

Fisher AD, Morton R, Dempsey JM, Henshall JM, Hill JR (2008) Evaluation of a new approach for the estimation of the time of the LH surge in dairy cows using vaginal temperature and electrodeless conductivity measurements. Theriogenology 70:1065-1074.

Flores-Peinado S, Mota-Rojas D, Guerrero-Legarreta I, Mora-Medina P, Cruz-Monterrosa R, Gómez J, Hernández MA, Cruz-Playas J, Martínez J (2020) Pre-slaughter stress in pigs, infrared thermography assessment and meat quality. International Journal of Veterinary Science and Medicine (In review).

Garcia OS, Vale WG, Garcia AR, Ribeiro HFL, Ferro RS, Rolim-Filho ST, Sousa EM (2010) Experimental study of testicular insulation in buffalo. Revista Veterinaria 21:889-891.

Gloster J, Ebert K, Gubbins S (2011) Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection. BMC Veterinary Research 7:73.

Guerrero-Legarreta I, Napolitano F, Cruz-Monterrosa RG, Mota-Rojas D, Mora-Medina P, Ramírez-Bribiesca E, Bertoni A, Berdugo GJ, Braghieri A (2020) River buffalo meat production and quality: sustainability, productivity, chemical composition and sensory properties. Journal of Buffalo Science 9: (Accepted).

Hockey CD, Morton JM, Norman ST, Mcgowan MR (2010) Evaluation of a neck mounted 2-hourly activity meter system for detecting cows about to ovulate in two paddock-based Australian dairy herds. Reproduction in Domestic Animals 45:107-117.

Hoffmann G, Schmidt M, Ammon C (2013) Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Veterinary Research Communicatioin 37:91-99.

Hovey RC, Aimo L (2010) Diverse and active roles for adipocytes during mammary gland growth and function. Journal of Mammary Gland Biology and Neoplasia 15:279-290.

Kastelic JP (2014) Understanding and evaluating bovine testes. Theriogenology 81:18-23.

Kastelic JP, Brito LF (2012) Ultrasonography for monitoring reproductive function in the bull. Reproduction in Domestic Animals 47:45-51.

Kastelic JP, Rizzoto G, Thundathil J (2018) Review: Testicular vascular cone development and its association with scrotal thermoregulation, semen quality and sperm production in bulls. Animal 12:133-141.

Knizkova I, Kunc P, Gurdil GAK, Pinar Y, Selvi KC (2007) Applications of infrared thermography in animal production. Journal of the Faculty of Agriculture 22:329-336.

Kyle BL, Kennedy AD, Small JA (1998) Measurement of vaginal temperature by radiotelemetry for the prediction of estrus in beef cows. Theriogenology 49:1437-1449.

Lunstra DD, Coulter GH, (1997) Relationship between scrotal infrared temperature patterns and natural-mating fertility in beef bulls. Journal of Animal Science 75:767-774.

Luzi F, Mitchell M, Costa LN, Redaelli V (2013) Thermography: current status and advances in livestock animals and in veterinary medicine. Fondazione Iniziative Zooprofilattiche e Zootecniche Brescia. http://www.fabioluzi.it/wordpress/wp-content/uploads/2012/11/092-2013-Thermography-current-status-and-advances-in-livestock-animals-and-in-veterinary-medicine-1-Copia.pdf Accessed on: February 3, 2020.

Malama E, Bollwein H, Taitzoglou IA, Theodosiou T, Boscos CM, Kiossis E (2013) Chromatin integrity of ram spermatozoa. Relationships to annual fluctuations of scrotal surface temperature and temperature-humidity index. Theriogenology 80:533-541.

Martello LS, Savastano-Junior H, Silva SL, Balieiro JCC (2010) Alternative body sites for heat stress measurement in milking cows under tropical conditions and their relationship to the thermal discomfort of the animals. International Journal of Biometeorology 54:647-652.

Menegassi SRO, Pereira GR, Dias EA, Rocha MK, Carvalho HR, Koetz-Junior C, Oberst ER, Barcellos JOJ (2018) Infrared thermography as a noninvasive method to assess scrotal insulation on sperm production in beef bulls. Andrologia 50:12904.

Montanholi YR, Odongo NE, Swanson KC, Schenkel FS, McBride BW, Miller SP (2008) Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). Journal of Thermal Biology 33:468-475.

Mora-Medina P, Berdugo-Gutiérrez J, Mota-Rojas D, Nava AJ, Guerrero-Legarreta I, (2018a) Behaviour and welfare of dairy buffaloes: pasture or confinement? Journal of Buffalo Science 7:43-48.

Mora-Medina P, Napolitano F, Mota-Rojas D, Berdugo-Gutiérrez J, Ruiz-Buitrago J, Guerrero-Legarreta I, (2018b) Imprinting, sucking and allosucking behaviors in buffalo calves. Journal of Buffalo Science 7:49-57.

Mosher MD, Ottobre JS, Haibel GK, Zartman DL (1990) Estrual rise in body temperature in the bovine II. The temporal relationship with ovulation. Animal Reproduction Science 23:99-107.

Mota-Rojas D, Orihuela A, Strappini-Asteggiano A, Cajiao-Pachón MN, Aguera-Buendia E, Mora-Medina P, Ghezzi M, Alonso-Spilsbury SM, (2018) Teaching animal welfare in veterinary schools in Latin America. International Journal of Veterinary Science and Medicine 6:131-140.

Mota-Rojas D, De Rosa G, Mora-Medina P, Braghieri A, Guerrero-Legarreta I, Napolitano F (2019) Invited review: Dairy buffalo behaviour and welfare from calving to milking. CAB Reviews 14:1-9.

Mota-Rojas D, Napolitano F, Bertoni A, Gómez PJ, Mora-Medina P, Cruz-Monterrosa R,  Álvarez-Macías A, Pérez NJ, Guerrero-Legarreta I (2020a) Thermal biology in river buffalo in the humid tropics: neurophysiological and behavioral responses. International Journal of Veterinary Science and Medicine (In review).

Mota-Rojas D, Broom DM, Orihuela A, Velarde A, Napolitano N, Alonso-Spilsbury M (2020b) Effects of human-animal relationship on animal productivity and welfare. Journal of Animal Behaviour and Biometeorology 8:196-205.

Mota-Rojas D, Olmos-Hernández A, Verduzco-Mendoza A, Lecona-Butrón H, Martínez-Burnes J, Mora-Medina P, Gómez PJ, Orihuela A, (2020c) Infrared thermal imaging associated with pain in laboratory animals. Experimental Animals 69: (Accepted).

Napolitano F, Serrapica F, Braghieri A, Masucci F, Sabia E, De Rosa G, (2019) Human-Animal Interactions in Dairy Buffalo Farms. Animals 9:246.

Napolitano F, Arney D, Mota-Rojas D, De Rosa G, (2020) Chapter 17. Reproductive Technologies and Animal Welfare. In: Reproductive Technologies in animals. Giorgio A. Presicce (Eds). S&T Sci., Elsevier Press, London, United Kingdom. pp. 275-286.

Orihuela A, Mota-Rojas D, Velarde A, Strappini-Asteggiano A, Thielo de la Vega L, Borderas-Tordesillas F, (2018) Invited review: environmental enrichment to improve behaviour in farm animals. CAB Reviews 13:1-25.

Paim TP, Borges BO, Lima PMT, Gomes EF, Dallago BSL, Fadel R, Menezes AM, Louvandini H, Canozzi MEA, Barcellos JOJ, McManus C (2013) Thermographic evaluation of climatic conditions on lambs from different genetic groups. International Journal of Biometeorology 57:59-66.

Peng D, Chen S, Li G, Chen J, Wang J, Gu X (2019) Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. International Journal of Biometeorology 63:327-336.

Pérez-Pedraza E, Mota-Rojas D, González-Lozano M, Guerrero-Legarreta I, Martínez-Burnes J, Mora-Medina P, Ramírez-Necoechea R (2018) Infrared thermography and metabolic changes in castrated piglets due to the effects of age and the number of incisions in the testicles. American Journal of Animal and Veterinary Sciences 13:104-114.

Prosser CG, Davis SR, Farr VC, Lacasse P (1996) Regulation of blood flow in the mammary microvasculature. Journal Dairy Science 79:1184-1197.

Purohit RC, Hudson RS, Riddell MG, Carson RL, Wolfe DF, Walker DF (1985) Thermography of the bovine scrotum. American Journal of Veterinary Research. 46:2388-2392.

Redden KD, Kennedy AD, Ingall SJR, Gilson TL (1993) Detection of estrus by radiotelemetric monitoring of vaginal and ear skin temperature and pedometer measurements of activity. Journal Dairy Science 76:713-721.

Romanovsky AA, Ivanov AI, Shimansky YP (2002) Selected Contribution: Ambient temperature for experiments in rats: a new method for determining the zone of thermal neutrality. Journal of Applied Physiology 92:2667-2679.

Ruiz LG, Castro RV, Cordoba IA, Castillo GA, Jayme AV, Rosas SL (2012) El sistema nervioso autónomo: un enfoque integral y dialéctico para el estudiante universitario. Universidad Autónoma Metropolitana. CBS.

Santos AX, Kahwage PR, Faturi C, Quinzeiro NT, Lourenço-Junior JB, Joele MRSP, Garcia AR (2014) Feed supplementation with palm kernel cake-based concentrate increases the quality of water buffalo semen. Animal Reproduction 11:85-95.

Scolari SC, Clark SG, Knox RV (2011) Vulvar skin temperature changes significantly during estrus in swine as determined by digital infrared thermography. Journal of Swine Health and Production 19:151-155.

Selvam RM, Archunan G (2017) A combinatorial model for effective estrus detection in murrah buffalo. Veterinary World 10:209-213.

Sevegnani KB, Fernandes DPB, Silva SHMG (2016) Evaluation of thermoregulatory capacity of dairy buffaloes using infrared thermography. Engenharia Agrícola 36:1-12.

Singh J, Nanda AS, Adams GP (2000) The reproductive pattern and efficiency of female buffaloes. Animal Reproduction Science 60:593-604.

Stewart M, Webster JR, Stafford KJ, Schaefer AL, Verkerk GA (2010) Technical note: effects of an epinephrine infusion on eye temperature and heart rate variability in bull calves. Journal Dairy Science 93:5252-5257.

Sykes DJ, Couvillion JS, Cromiak A, Bowers S, Schenck E, Crenshaw M (2012) The use of digital infrared thermal imaging to detect estrus in gilts. Theriogenology 78:147-152.

Talukder S, Kerrisk KL, Ingenhoff L, Thomson PC, Garcia SC, Celi P (2014) Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. Theriogenology 81:925-935.

Tattersall GJ (2016) Infrared thermography: A non-invasive window into thermal physiology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 202:78-98.

Tattersall GJ, Cadena V (2010) Insights into animal temperature adaptations revealed through thermal imaging. The Imaging Science Journal 58:261-268.

Tortora GJ, Derrickson B (2013) Metabolismo y Nutrición. In: Tortora GJ, Derrickson B (eds) Principios de anatomía y fisiología, 13 edn. Médica Panamericana, España, pp. 1048-1051.

Travain T, Colombo ES, Heinzl E, Bellucci D, Previde EP, Valsecchi P (2015) Hot dogs: Thermography in the assessment of stress in dogs (Canis familiaris) - A pilot study. Journal of Veterinary Behavior 10:17-23.

Verma KK, Prasad S, Mohanty TK, Kumaresan A, Layek SS, Patbandha TK, Kantwa SC (2014) Behavioural signs of estrus in different parity of Murrah buffaloes (Bubalus bubalis): a comparative study. Indian Journal of Animal Research 48:620-624.

Yadav SK, Singh P, Kumar P, Singh SV, Singh A, Kumar S (2019) Scrotal infrared thermography and testicular biometry: Indicator of semen quality in murrah buffalo bulls. Animal Reproduction Science 209:106145. doi.org/10.1016/j.anireprosci.2019.106145


Submitted date:
06/27/2020

Accepted date:
07/13/2020

5f8c83510e8825aa4ba77e78 jabbnet Articles
Links & Downloads

J Anim Behav Biometeorol

Share this page
Page Sections