Journal of Animal Behaviour and Biometeorology
https://jabbnet.com/article/doi/10.31893/2318-1265jabb.v6n1p21-28
Journal of Animal Behaviour and Biometeorology
Research Article Open Access

Litter quality of broiler fed with to different levels of sulfur amino acid

Genilson Bezerra de Carvalho, Lindolfo Dorcino dos Santos Neto, Julyana Machado da Silva Martins, Nikoly Maria Pereira, Michelly Barbosa Falleiros, Emmanuel Arnhold, Marcos Barcellos Café

Downloads: 0
Views: 1212

Abstract

The objective of this study was to determine the effect of sulfur amino acid (methionine+cystine) supplementation included in the diet of broiler chickens raised under Brazilian commercial conditions on the concentration of ammonia gas, moisture, pH, temperature, and nitrogen excretion in litter on the 14th, 28th, and 42nd day of breeding. A total of 900 male chicks of the Cobb500 line were used, distributed in a completely randomized design with five treatments, with six replicates of 30 birds. A basal diet (without methionine) was formulated and was supplemented with DL-methionine (0.072, 0.168, 0.239, 0.311% and 0.058, 0.134, 0.192, 0.250% for days 1 to 21 and days 22 to 42 of breeding respectively) replacing the corn starch in order to achieve the desirable digestible methionine + cysteine levels (0.545 (basal diet), 0.616, 0.711, 0.782 and 0.853%) and (0.514 (basal diet); 0.571; 0.647; 0.704 and 0.761% and digestible methionine + cysteine for the phase 1 to 21 and 22 to 42 days of breeding, respectively. There was no significant effect on the temperature and concentration of ammonia gas in any of the phases evaluated. Met+cys supplementation influenced moisture and pH of litter in all the evaluated phases. For nitrogen, a significant effect was observed at 14 days, not exhibiting effects during the other phases, suggesting that nitrogen excretion increases with increasing levels of met+cys in the diet for up to 14 days.

Keywords

crystalline amino acid, poultry, litter, methionine + cystine

References

Alvarenga RR, Nagata AK, Rodrigues PB, Zangeronimo MG, Pucci LEA, Hespanhol R (2011) Adição de fitase em rações com diferentes níveis de energia metabolizável, proteína bruta e fósforo disponível para frangos de corte de 1 a 21 dias. Ciência Animal Brasileira 12:602-609.

Assity-Duffey K, Cabrera M, Rema J (2015) Ammonia volatilization from broiler litter: Effect of soil water content and humidity. Soil Science Society of America Journal 79:543-550.

Bertechini AG (2006) Nutrição de Monogástricos, Lavras: Editora UFLA.

Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. Recent Advances in Nutritional Sciences 139:821-825.

Behera SN, Sharma M, Aneja VP, Balasubramanian R. (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research 20:8092-8131.

Brasil (1992) Ministério da Agricultura e Reforma Agrária. Regras para análise da qualidade e produtividade. Brasília: MDA.

Bressani R, Braham JE (1964) Effect of water intake on nitrogen metabolism in dogs. Journal of Nutrition 82:469-474.

Carter SD, Kim HJ (2013) Technologies to reduce environmental impact of animal wastes associated with feeding for maximum productivity. Animal Frontiers 3:42-47.

Capitelli R, Crosta L (2013) Overview of psittacine blood analysis and comparative retrospective study of clinical diagnosis, hematology and blood chemistry in selected psittacine species. Veterinary Clinics of North America: Exotic Animal Practice 16:71-120.

Carvalho TMRD, Moura DJD, Souza ZMD, Souza GSD, Bueno LGDF (2011) Litter and air quality in different broiler housing conditions. Pesquisa Agropecuária Brasileira 46:351-361.

Cobb-Vantress (2008) Manual de manejo de frangos de corte. Guapiaçu: Cobb Vantress.

Collett SR (2012) Nutrition and wet litter problems in poultry. Animal Feed Science and Technology 173:65-75.

Corzo A, Loar II, Kidd MT, Burgess SC (2011) Dietary protein effects on growth performance, carcass traits and expression of selected jejunal peptide and amino acid transporters in broiler chickens. Revista Brasileira de Ciência Avícola 13:139-146.

Choi IH, Moore PA (2008) Effect of various litter amendments on ammonia volatilization and nitrogen content of poultry litter. The Journal of Applied Poultry Research 17:454-462.

Donsbough AL, Powell S, Waguespack A, Bidner TD, Southern LL (2010) Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poultry Science 89: 287-294.

Dozier WA III, Kidd MT, Corzo A (2008) Dietary amino acid responses of broiler chickens. Journal of Applied Poultry Research17:157-167.

Devilin TM (2011) Manual de bioquímica com correlações clinicas. In: ______. Metabolismo de aminoácidos. São Paulo (SP): Blücher, 732-736.

García RG, Almeida Paz ICL, Caldara FR, Nääs IA, Pereira DF, Ferreira VMOS (2012) Selecting the most adequate bedding material for broiler production in Brazil. Revista Brasileira de Ciência Avícola 14:121-127.

Hernandes R, Cazetta JO (2001) Simple and accessible method to determine liberated ammonia from the broiler litter. Revista Brasileira de Zootecnia 30:824-829.

Hristov AN, Hanigan M, Cole A, Todd R, Mcallister TA, Ndegwa PM, Rotz A (2011) Review: ammonia emissions from dairy farms and beef feedlots 1. Canadian journal of animal science 91:1-35.

Kim WK, Froelich CA, Patterson PH, Ricke SC (2006) The potential to reduce poultry nitrogen emissions with dietary methionine or methionine analogues supplementation. World's Poultry Science Journal 62:338-353.

Li H (2006) Ammonia emissions from manure belt laying hen houses and manure storage, PhD Diss. Iowa State University, Ames.

Miles DM (2008) Vertical stratification of ammonia in a broiler house. The Journal of Applied Poultry Research 17:348-353.

Miles DM, Rowe DE, Cathcart TC (2011) Litter ammonia generation: Moisture content and organic versus inorganic bedding materials. Poultry Science 90:1162-1169.

Murphy KR, Parcsi G, Stuetz RM (2014) Non-methane volatile organic compounds predict odor emitted from five tunnel ventilated broiler sheds. Chemosphere 95:423-432.

Nagaraj M, Wilson CAP, Saenmahayak B, Hess JB, Bilgili SF (2007) Efficacy of a litter amendment to reduce pododermatitis in broiler chickens. The Journal of Applied Poultry Research 16:255-261.

Namroud NF, Shivazad M, Zaghari M (2008) Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poultry Science 87:2250-2258.

Namroud NF, Shivazad M, Zaghari M (2009) Impact of dietary crude protein and amino acids status on performance and some excreta characteristics of broiler chicks during 10–28 days of age. Journal of Animal Physiology and Animal Nutrition 94:280-286.

Oliveira MCD, Almeida CV, Andrade DO, Rodrigues SMM (2003) Teor de matéria seca, pH e amônia volatilizada da cama de frango tratada ou não com diferentes aditivos. Revista Brasileira de Zootecnia 32:951-954.

Oviedo-Rondón EO (2008) Tecnologias para mitigar o impacto ambiental da produção de frangos de corte. Revista Brasileira de Zootecnia 37(SPE):239-252.

Owada AN, Nääs IDA, Moura DJD, Baracho MDS (2007) Estimativa de bem‑estar de frango de corte em função da concentração de amônia e grau de luminosidade no galpão de produção. Engenharia Agrícola 27:611-618.

Pillai S (2011) Intercomparison of headspace sampling methods coupled to TD-GC-MS/O to characterise key odorants from broiler chicken litter. 319p. Dissertation Sydney: University of New South Wales.

Qiu G, Guo M (2010) Quality of poultry litter-derived granular activated carbon. Bioresource Technology 101:379-386.

Rehbeger TC (2002) Controlling litter microorganisms. e- Digest 2:1-6.

Rostagno HS, Albino LFT, Donzele JL, Gomes PC, Oliveira RF, Lopes DC, Ferreira AS, Barreto SLT, Euclides RF (2011) Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais de aves e suínos. 3ªedição, Viçosa, MG: UFV.

Sharma NK, Choct M, Wu SB, Smillie R, Swick RA (2015) Dietary composition affects odour emissions from meat chickens. Animal Nutrition 1:24-29.

Sharma NK, Choct M, Wu SB, Smillie R, Morgan N, Omar AS, Swick RA (2016) Performance, litter quality and gaseous odour emissions of broilers fed phytase supplemented diets. Animal Nutrition 1-8.

Shepherd EM, Fairchild BD (2010) Footpad dermatitis in poultry. Poultry Science 89:2043-2051.

Traldi AB, Oliveira MCD, Duarte KF, Moraes VMBD (2007) Avaliação de probióticos na dieta de frangos de corte criados em cama nova ou reutilizada. Revista Brasileira de Zootecnia 36:660-665.

Van Der Hoeven-Hangoor E, Paton ND, Van De Linde IB, Verstegen MWA, Hendriks WH (2013) Moisture content in broiler excreta is influenced by excreta nutrient contents. Journal of Animal Science 91:5705-5713.

Wen C, Chen X, Chen GY, Wu P, Chen YP, Zhou YM, Wang T (2014) Methionine improves breast muscle growth and alters myogenic gene expression in broilers. Journal of Animal Science 92:1068-1073.

Wadud S, Michaelsen A, Gallagher E, Parcsi G, Zemb O, Stuetz R, Manefield M (2012) Bacterial and fungal community composition over time in chicken litter with high or low moisture content. British Poultry Science 53:561-569.

Zhang S, Wong EA, Gilbert ER (2015) Bioavailability of different dietary supplemental methionine sources in animals. Frontiers in Bioscience (Elite edition) 1:478-490.

Ziaein N, Guy JH, Edwards SA, Blanchard PJ, Ward J, Feuerstein D (2007) Effect of gender on factors affecting excreta dry matter content of broiler chickens. The Journal of Applied Poultry Research 16:226-233.


Submitted date:
10/18/2017

Accepted date:
12/29/2017

5f91aab80e8825237e1ddb38 jabbnet Articles
Links & Downloads

J. Anim. Behav. Biometeorol.

Share this page
Page Sections